UCRL-WEB-201481

Gang Scheduler User Guide

Gang Scheduler User Guide - 1

Table of Contents

Preface 3
Introduction 4
Usage Overview 5
How to Use 5
When to Use 7
Signals 8
Process Initialization (Obsolete) 9
Parallel Program Registration 10
GangJobRegister Arguments 10
GangJobRegister Example 13
Process Registration (Addition) 14
GangProcAdd Arguments 14
GangProcAdd Example 15

Job Monitoring with XGANG 16
Running XGANG 16
Display by Computer 17
Display by Job 19
Advanced Topics 23
Computer Failure 23

Error Code Tranglation 23
Process Removal 23

Job Class Change 24
GangHostQuery 24
Remote Procedure Calls 25
Event Logging 25

Timing Information 25

Thread Use 26
Fortran Use 27
Examples 29
Preemption of Jobs 31
How It Works 33
Disclaimer 35
Keyword Index 36
Alphabetical List of Keywords 38
Date and Revisions 40

Gang Scheduler User Guide - 2

Scope:

Availability:

Consultant:

Printing:

Preface

LLNL's gang scheduler supports the concurrent scheduling of processorsfor parallel
programs. This guide tells how to prepare both C and Fortran programs so they will
invoke the gang scheduler appropriately (initialization, program registration, and
process registration), how to monitor gang-scheduled jobs by running XGANG, how
to interpret XGANG output, and how to handle special (error or query) situations.
The basic job-management approach used by LLNL'sgang scheduler isa so explained,
along with the role of job preemption in gang scheduling.

This manual is adapted and expanded from parts of UCRL-MI1-129060 and
UCRL-JC-129927, both by Moe Jette.

Versionsof LLNL'sgang scheduler can be invoked (indirectly) by programs running
on machine GPS320 (a 32-node member of the Compag GPS cluster), aswell ason
L C's open and secure IBM SP machines (such as Blue and White). These versions
are developmental and may vary between operating systems. DPCS support for gang
scheduling across all machinesin a Compaq cluster ended with DPCS version 6.7
(spring, 2002).

For help contact the L C customer service and support hotline at 925-422-4531 (open
e-mail: Ic-hotline@lInl.gov, secure e-mail: Ic-hotline@pop.linl.gov).

The print file for this document can be found at:

on the OCF: http://ww.l1nl.qgov/LCdocs/ gand/ gang. pdf
on the SCF: https://Ic.llnl.gov/LCdocs/gang/ gang_scf . pdf

Gang Scheduler User Guide - 3

http://www.llnl.gov/LCdocs/gang/gang.pdf

Introduction

The gang scheduler (originally for Cray computers, then generalized for other operating systems) was
developed by Lawrence Livermore National Laboratory (LLNL) to provide users with away to better
harness the power of large, parallel machines.

In this document, the following special terms appear:

gang scheduling

groups a program's parallel threads of execution (next item) into a"gang," then
concurrently schedules one independent processor for each thead in the gang. Such
concurrent scheduling can occur on a single computer as well as across multiple
computersinacluster, and it allowsaparallel program to take advanage of itsinherent
parallelism even under heavy loads.

thread isapath of program execution that can proceed at the same time as others. Included
asthreads are processes generated by fork system calls, MPI (Message Passing
Interface) and PVM (Parallel Virtual Machine) tasks, and Pthreads.

space sharing allowsmultiple programs (or threads) to execute independently on distinct processors
at the same time (but not take turns on one processor).

time sharing allowsdifferent programsto take turns running on the same processor. Gang scheduling
arrangesjust such concurrent program access to processors and then concurrent access
removal, so that each program sees dedicated computing resources during its periods
of execution (memory and 1/O bandwidth excluded).

Most paralel UNIX systemsfail to provide synchronized compute resources for parallel programs,
and even dlight level s of competition for processors can severly impact program performance. Many tightly
synchronized programs continuously poll semaphores at synchronization points (called " spin-wait"), rather
than relinquish a processor. Unless a program's threads of execution can be concurrently "gang scheduled"
for processors, this spin-wait pattern can waste substantial time without advancing a program's progress.

Gang Scheduler User Guide - 4

Usage Overview

How to Use

The relevant instructions for using the gang scheduler depend on the design of your parallel program.
There are three cases:

MPICH Users

If your program loads with the default MPICH library, then you can invoke gang
scheduling with no code or load changes just by setting the GANG_SCHEDULE
environment variable (e.g., under the C shell, by using setenv) before you execute
the program. Set GANG_SCHEDULE to:

1 if your program does NOT use either of the signals SIGUSRL1 or
SIGUSR2 for its own purposes, or

2 if your program does use either of the signals SIGUSR1 or SIGUSR2
for its own purposes.

Digital MPI (DMP!) Users

If your program loads with Digital'sMPI library (DMPI) on a Compag machine (such
as GPS320), then you can invoke gang scheduling with THREE STEPS that include
code and load changes as follows:

call Insert this one extra function call into your code immediately after

gs _register() you call MPI_Init, to automatically manage your interface to the
gang scheduler. The mpichk2.f Fortran example (page 29) discussed
below illustrates this step.

load with /usr/local/lib/libgs.a
in addition to your usual MPI library, to make the gang scheduler
support functions available to your program.

setenv GANG_SCHEDULE 2

before you execute the program (to invoke gang scheduling in away
that freessignals SIGUSR1 and SIGUSR2 for other useswith Digital
MPI).

PVM Users and others wanting customized control

If your program uses the PV M approach or if you want to manipulate the
gang-schedul er invocation routines yourself, then you can add gang scheduling support
directly to your program by installing the "application program interface” (API)
features described in therest of this document and illustrated in most of the examples
(page 29) below. The steps (details in other sections) are summarized here:

Gang Scheduler User Guide - 5

« Your application program must build a data structure describing its resource
requirements (eg. 3 CPUs on computer east and 4 CPUs on computer west),
call afunction (GangJobRegister (page 10) for C, GangResourceReqister (page
27) for Fortran) to register these resource requirements, and get ajob ID.

« Your program must then register (using GangProcAdd (page 14)) its processes,
process group(s), or sessions as part of the job using the whole-job 1D returned
at resource-registration time.

« To provide it with needed gang-scheduler data-type and function definitions,
your program must include (be compiled with) either the C header file
GangUserAPI.h (or the thread-safe equivalent GangUserAPI_r.h) or else the
Fortran header file fGangUserAPI.h (or the thread-safe equivalent
fGangUserAPI_r.h). All these header filesreside in the directory
/usr/local/include.

 You must load your program with its usual libraries plus /usr/local/lib/libgs.a
(oritsthread-safe equivaent library libgs r.a), which includesthe gang scheduler
API functions.

In all three cases above, the gang scheduler notes when processes terminate and performsthe necessary
clean-up automatically.

Gang Scheduler User Guide - 6

When to Use

The benefits from gang scheduling are achieved by synchronized scheduling of CPU and memory
resources required by the parallel program, and by dedicating CPUsto the job's processes. The overall rate
at which resource are made available to the program is roughly the same either with or without gang
scheduling, however. Change in program performance depends upon severa factors, including: level of
synchronization required, cache reference patterns, and memory reference patterns. Additionally, the current
load on the machine has a major impact on the performance of gang-scheduled jobs. Some programs
demonstrate speedups as much as 700%. Other programs have been seen to actually run slower due to
memory contention. Typical speedups for complex applications have been in the 5% to 50% range.

The gang scheduler is not appropriate for use on all parallel jobs. Communication with the gang
scheduler daemon(s) takes afew seconds for initialization, making it best suited for longer running jobs.
Jobs without tightly synchronized communications or significant 1/0O may operate well without gang
scheduling.

Fortran Users Note:
The function descriptionsin the main sections of this document are oriented toward C programmers. A
separate later section (page 27) has been prepared for Fortran programmers with descriptions of easy to
use subroutines for that environment. Those Fortran calls are patterned after the C functions described
below. Itisadvisablethat you read the analysisin the main text without concerning yourself with the syntax
of the C subroutines calls, then look in the Fortran section (page 27) for details on the actual callsyou will
need to use.

Gang Scheduler User Guide - 7

Signals

The signals SIGUSR1 and SIGUSR2 are (normally) used to improve the overlap achieved by the gang
scheduler.

The gang scheduler createsa'class’ for each registered parallel program on every computer the program
will use. When processes are registered as a component of the program (details below), their process IDs
are added to the class. To stop the program (at the end of atime dlice) its classis alocated zero resources,
but this may not be completely effectiveif idle processors exist on the computer. To more effectively stop
the program, the SIGUSR1 and SIGUSR2 signals are optionally used to pause and continue its execution.
Y our program can explicitly disable gang-scheduler use of these signalsif they are required for other
purposes, but doing so will reduce concurrency and may reduce program performance too. These signals
also permit amore tightly synchronized stopping of the program at the end of atime slice than can be
achieved by class scheduling aone.

If your program makes use of these signalsfor other purposes, the gang scheduler will ater the program's
behavior unless you explicitly disable them (see the GangJobRegister (page 10) or GangJobClass (page
24) sectionsbelow for details; aFortran version of thiscall isalso available). MPI users may disable signals
by setting the GANG_SCHEDULE environment variable to 2. To avoid establishing extraneous signal
handlers, disable signals either in the GangJobRegister function call or prior to this by specifyingaNULL
job ID in acall to GangJobClass. (page 24)

Disabling the SIGUSR1 and SIGUSR2 signalsmay reduce your program's overlap by an amount which
varies with the system workload. Future modifications in the operating system (for example, slated for
Digital Unix 5.0) will eliminate gang-scheduler use of these signals.

Gang Scheduler User Guide - 8

Process Initialization (Obsolete)

The former use of routine GangJoblnit by each processto initialize for gang scheduling on Cray
computers running UNICOS is not required for any other platform or operating system. GangJobRegister
(next section) is now the first gang scheduling routine to invoke.

Gang Scheduler User Guide - 9

Parallel Program Registration

The GangJobRegister function (in C) performs two operations:
(2) It registers the program'’s resource requirements with the gang scheduler (in Fortran, you must use a
separate function called GangResourceReqister (page 27), described later in the Fortran section), and
(2) itreturnsajob ID. Thisjob ID isused in al subsequent communications with the gang scheduler.

Thisis by far the most complex function to communicate with the gang scheduler as detailed below.
Until ajob and its processes are registered with the gang schedul er, each process (and itstasks) are scheduled
independently by the operating system. Therefore parallel jobs should register at part of their initialization
to optimize performance.

The GangJobRegister syntax (in C) is:

extern gsRetVal GangJobRegi ster(

struct GangJobld *gang_job id ptr, [* The job ID */
JOB _CLASS j ob_cl ass, /* The job class */
struct GangResources *gang_resource list[]); /* The resource list */

The return code is gsSuccess if no errors were encountered. Otherwise, an error code is returned.

GangJobRegister Arguments

gang_job_id_ptr
isapointer tothejob ID structure. On thefirst call, this structure should be null filled.
A non-null job ID structure implies that the call isintended to update resource
requirements for a previously registered job. If azero CPU requirement is specified,
the job ceases to be controlled by the gang scheduler.

Gang Scheduler User Guide - 10

job_class specifiesthe job's class. Valid job classesat LLNL are CLASS EXPRESS,
CLASS INTERACTIVE, CLASS BATCH, CLASS BENCHMARK,
CLASS STANDBY, and CLASS UNIX. Different job classes may be used at other
sites, but modifications to the source code are required to add additional job classes.
New job classes could be restricted to certain users, have limits on their CPU count,

etc.

QASS EXFRESS isavailable only to the system super user for jobs requiring the best

throughput possible.

CLASS_INTERACTIVE

CLASS BATCH

isfor interactive jobs and is designed for short running program
development work. Jobs of this classmay be preferentially scheduled.
Jobs submitted as CLASS INTERACTIVE will bereclassified as
CLASS BATCH after executing for more than 60 CPU minutes
(configurable by system administrator, see
MAX_TIME_INTERACTIVE). Thispermitsthe systemto provide
optimal interactivity to shorter jobs requiring rapid throughput.

isfor batch jobs. It is suitable for long running production jobs.

CLASS BENCHMARK

QLASS STANDBY

CLASS_UNIX

designates jobs that will not be preempted once started, but may
take along time to begin execution. This may be used for timing
purposes.

specifies jobs that will be alocated otherwise unused system
resources. Thisis suitable for low-priority work.

specifiesjobsthat are registered to the gang scheduler, but not gang
scheduled. This permits use of the gang scheduler user interface
tools (and DPCS tools) for job tracking purposes without gang
scheduling in those cases where performance is better with UNIX
scheduling.

Normally, you should specify CLASS BATCH or CLASS INTERACTIVE. The
flag NO_SIGNALS FLAG may be ORed with other job classes to disable signals
and set the job class simultaneously (as shown in the example in the next section).
For another way to disable signals (by using GangJobClass), see alater section (page

24).

gang_resources list

isapointer to alist of pointers (example follows). Each pointer refers to the resource
requirements of the program on aspecific computer. Thelast pointer should be NULL.
The resource requirements are specified in the GangResources structure, which
includes the following fields:

Gang Scheduler User Guide - 11

machine

cpu_count

cpu_min

mega_mem

giga disk

The name of the computer these requirements apply to (e.g., west).

The CPU count requested. The number actually allocated may be
less due to system constraints. The actual number of CPUs assigned
to the job will be returned in thisfield.

The minimum acceptable CPU count.

The memory requirements of the program in megabytes. Thisis
optional, but may provide better performance if provided.

The disk storage requirements of the program in gigabytes. Thisis
optional, but may provide better performance if provided.

Gang Scheduler User Guide - 12

GangJobRegister Example

The C code fragment bel ow showsthe use of the GangJobRegi ster function. Thisis Compag-appropriate
code. noted in comments near the beginning.

Whileit is possible to register resource requirements with independent calls for each computer, this
will usualy result in significantly lower throughput than if all resource requirements for all computers to
be associated with ajob are included in asingle function call as shown below. Requesting more CPU
resources than you are actually ableto use will typically result in lower throughput than an accurate value.
For exampl e, ajob requesting four CPUswill normally be allocated those resources about half asfrequently
as ajob requesting two CPUs.

gsRet val rc;

struct GangJobld ny_job_id;

struct GangResources gang_resources|[2];
struct GangResources *gang_resource_list[3];

/* Clear job_id on first call, otherw se, */
/* the call will apply to an existing job */
bzero(&my _job_id, sizeof(ny_job_ id));

/* Define resource requirenents for conputer gps320 */
strcpy(gang_resources[0]. machi ne, "gps320");
gang_resources[0].cpu_count = 8;
gang_resources[0].cpu_mn = 120;
gang_resources[0] . nega_nmem = 5;
gang_resources[0].giga_di sk = 2;

gang_resource_list[0] &gang_resources[0] ;

gang _resource_|ist[2] = NULL;

rc = GangJobRegi ster(&my_job _id, CLASS | NTERACTIVE | NO_SI GNALS FLAG
gang_resource_list);
if (rc !'= gsSuccess) {
printf("Error from GangJobRegi ster %\ n", rc);
exit(1);

Gang Scheduler User Guide - 13

Process Registration (Addition)
After the job is registered, you must use GangProcAdd to specify ONE of these:

« theindividual processes associated with thejob. Full support is provided when theindividua processes
are identified and this is the recommended mode of operation.

« the process groups associated with the job. Support is not currently provided to suspend, resume, or
kill ajob in which only process groups are identified.

« the sessions associated with the job. Support is not currently provided to suspend, resume, or kill a
job in which only sessions are identified.

Y ou can not mix these three ways of process registration (addition). Y ou can not, for example, specify
aprocess group plusindividual processes.

GangProcAdd Arguments
The call to register (add) processes is GangProcAdd, with this C syntax:

extern gsRetVal GangProcAdd(

struct GangJobld *gang_job_id ptr, /* The job ID */
JOB_PRCC proc_type, /* Type of process */
int id); /* ID of process */

where the three agruments are:

gang_job _id_ptr
isthejob ID which was returned by the GangJobRegister function (described in the

previous section). The job's ID applies throughout the computing environment and it
isyour responsibility to propagate it as needed.

proc_type indicates how components of the job will be specified. The allowed values are:
PROC_ID specifies process I Ds, the preferred method.
FROC GROUPID specifies process group IDs.
AROCEIONID specifies session I1Ds, not available on CRAY s.

id isthe ID of the job's component. It is usually easiest to specify the process IDs as
processes are started.

Gang Scheduler User Guide - 14

GangProcAdd Example

The C code fragment below demonstrates the use of GangProcAdd (to register individual processes
using their own process IDs, the preferred method when available).

rc = GangProcAdd(&my_job id, PROC ID, getpid());
if (rc !'= gsSuccess) {
printf("Error in GangProcAdd %\ n", rc);
exit(1);

Gang Scheduler User Guide - 15

Job Monitoring with XGANG

An X-windows tool called XGANG is available for monitoring the gang scheduler. It is simple to use
and each window has a Help button to describe what is displayed and the window's options. The displays
are updated automatically when the gang scheduler has selected new jobs to execute (about every 30
seconds). This means that job registration, process addition, class changes, and other activitieswill not be
visible until the next cycle during which the gang scheduler writesto its database and updates its display.
The periodic update is meant to minimize system overhead in running the gang scheduler.

Running XGANG

To monitor the scheduling of ajob, follow these steps:
- Initiate xgang (the UNIX file nameisall lowercase).

« Click on the button of one of the computers executing the job that you are trying to monitor. This
will create awindow with the status of that computer and alist of gang-scheduled jobs on it.

+ Click on any job(s) of interest to see job details reported (example output appears below).

- If thejob is executing on multiple computers, click on the Show Job On All Hosts button to see the
job's details on al computers.

The colors used in the XGANG displays are configurable by means of environment variables. The
environment variables that you can set are GANG_COLOR_1, GANG_COLOR_2, GANG_COLOR_3,
and GANG_COLOR_4. These variables are utilized by the Tcl/Tk program and should specify a color
name (blue, red, green, orange, black, white, yellow, pink, etc). The colors specified will be used for both
the computer and job detail displays (illustrated in the next two sections).

The font used in the displays can be reconfigured through the use of an environment variable too. The
environment variable GANG_FONT _1 will set thefont used in most windows. The default font is FIXED.
Alternate font values are system dependent. Y ou may view alist of possible fonts by executing the UNIX
command XL SFONTS on the machine where you plan to run XGANG. Note however that if you pick a
nonfixed-width font, you will probably spoil the alignment of the XGANG output.

Gang Scheduler User Guide - 16

Display by Computer

A sample display of detailed computer information from XGANG is shown in Figure 1. Below the
figureis an itemized explanation of each field that it displays, listed in the order in which they appear.
(The specific machine mentioned on the example display, NORTHEAST, is no longer available at LC,
but the use of XGANG remains the same.)

ke machdetail_northeast

ST = s i sy oy AR U et
Time‘f++'I‘+1‘+'I‘+++++++++++f+++13:51:00

BRI oonco0000000sonoso0000Iks

CPUs for nom—gang jobs.....l

ang =cheduler wersion,,.. . DEC 4

Slice period,.....eeeseesq.00 SECONDS

Process COUNL.sesseesssssssile

Dk E I ey e e e L0

Runable Tasks......evee...13

Real memory USE,....ssressearoe of 3051 HBytes
Wirtual memory use,........1643 of 15853 MBytes
lzer CPU utilization,,.....39.43 percent
System CPU utilization,,... 4.56 percent

Idle CPU utilization,...... 0.02 percent

Clazz=None Priaority=0
Class=Express= Priority=h
Clazz=Interactive Priority=3
Clazs=RBatch Priority=3
Clasz=Benchmark Priority=2
Claz==5tandby Priority=1

Resource Utilization

B0E
TR
B0
SO
407
0%
20
10%

Time —

B User CPU use O System CPU use
O Real memory use B Idle CPU use

l Help | Quit

Figure 1. A sample of detailed computer information from XGANG.

Machine Name of the computer reported on.

CPUs The count of CPUs on this computer.

Gang Scheduler User Guide - 17

CPUs for non-gang jobs

The count of CPUs reserved for non-gang scheduled jobs. The system administrator
can set thisto 1 or more in order to insure timely response for interactive jobs. Y ou
can only be allocated CPUswhich are on the computer, but not reserved for non-gang
scheduled jobs.

Slice period The time period of each gang scheduler processor allocation.
Processcount Count of processes on this computer.
Task count Count of tasks (or threads) on this computer.

Runabletasks Count of tasks currently in run state (ie. competing for the avail able processors). This
is used to computer a"fair" allocation of resources for gang scheduled jobs.

Real memory use

Displays real memory use and total real memory on this computer.

Virtual memory use

Displays virtual memory use and total virtual memory on this computer.

User CPU utilization

Displays CPU resources being consumed by user jobs of any nice value.

System CPU utilization

Displays CPU resources being consumed by the operating system and system
processes.

Idle CPU utilization

Displays CPU resource not being consumed by the user or system.

Class/Priority Displays all possible job classes and their relative priority.

Gang Scheduler User Guide - 18

Display by Job

A sample display of detailed job information from XGANG is shown in Figure 2. Below thefigureis
an itemized explanation of each field that it displays, listed in the order in which they appear. (The specific
machine mentioned on the example display, NORTHEAST, isno longer available at L C, but the use of
XGANG remains the same.)

The" Show Job On All Computers' button at the bottom of the window enablesyou to seeal components
of thejob on all computerseasily. The"Modify Job" button at the bottom provides amechanism to manage
the job as asingle entity, even if it spans multiple machines. Job management functions include: kill job,
suspend job, resume job, and change job.

Note that some job class changes are restricted to system administrators. Also note that job class changes
can be initiated by the system in response to changes in the job's nice value or the job being stopped. If
thejob is stopped, it will be placed into standby class and can be removed only be a system administrator.
Jobs that are suspended are not subject to class changes, but may have their record purged from the gang
scheduler if the job is suspended for an extended period.

Job modifications are based upon the gang scheduler's database, which is update at each time slice and
might not reflect the latest situation such as newly added processes. After modifying ajob's state (particularly
killing, suspending or resuming ajob), insure that all components of the job are addressed.

Gang Scheduler User Guide - 19

riEJ jobdetail_northeast13

Global job ID..sessssssnsss l3znortheast

Job active on computers,,.,.northeast

Local Job ID..iivsissssaeeesdd

Cammand. seusvssssssssssssssshared,men

[S B S e | -

Lzl e e)

Stat’eﬁﬁli###li##++++++++++++++Run

RREE RIS o o o cnne oo eyl

TRl BRI e e b s sy e vy et

I:PLI I:I:lunt‘f++++++++++++++++++4

Class.ivsssrisssssarsssassalnteractive

Original Class,.sssssssseesslnteractive

Job initiated...sesseranss. 13249125 Hed How 12

Lazt azzigned CPUs,.........13:56:00 Wed Moy 12

Process IDSuesvesseasessesss 12071, 28820, 12660
12732

BRI (e Rl e

Real memory uzed,,,.verrre.372 EBytes

Real memory used (peakl,....472 EBytes

Yirtual memory used,........7104 KBytes

Memory requested.......ve...5 HBytes

Disk space requested........l GBytes

Job does not have time zlices reserved at thiz time.

CPU and Relative Memory Usze

T D O e O O = DO LD

Time €30 seconds per slicel —

M Target CPU use B Actual CPU use
E Real memory use O Virtual memory use

Hely All Computers Job

Show Job On | Modify | ouit I

Figure 2. A sample of detailed job information from XGANG.

Globa Job ID Job ID throughout the cluster. It is composed of the name of the computer on which
the job originated and a sequence number.

Job active on computers
List of computers on which this job exists.

Local JobID Job ID on this computer. Gang scheduled jobs existing on multiple computers may
have different local job IDs on each computer.

Gang Scheduler User Guide - 20

Command

The name of one of the commands associated with the job on this computer.

User name Name of the user who initiated the job. Thisis used to determine who can modify the
job.

User ID The UID of the user who initiated the job.

State Current status of the job (Run, Wait, or Hung). A hung job is not using resources the
gang scheduler is attempting to allocate to it, so the gang schedul er has stopped trying.
If the job starts using resources again, gang scheduling will resume.

Nice The lowest nice value of any process associated with thisjob. Thisis used for
scheduling purposes.

Task count Number of tasks (or threads) associated with this job.

CPU count Number of CPUs to be associated with the job whenever in Run state.

Class Current class of the job (Express, Interactive, Batch, Benchmark or Standby).

Original Class Original class of the job. The current class of ajob may change due to system
administrator intervention or nice value changes.

Job initiated When the job was registered with the gang scheduler.

Last assigned CPUs
When the job was last assigned CPUs (in Run state). A job will be purged if it has
not been assigned CPUs for "too" long, that period being configurable by the system
administrator.

Process IDs The process | Ds associated with this job. (Only one of process, group, or sessions

IDswill show.)

Process group IDs

Session IDs

CPU time used

The process group | Ds associated with this job. (Only one of process, group, or
sessions IDswill show.)

The session | Ds associated with thisjob. (Only one of process, group, or sessions|Ds
will show.)

The cumulative CPU time consumed by those processes currently associated with

this job on this machine. If a process terminates, its cumulative CPU time ceasesto

be reported here. If the actual CPU use is significantly below the CPU allocation, the

job may requiretuning in order to achievethe desired level of parallelism. Your job's

throughput is normally best if the actual CPU use equals the requested CPU count.

If thereisasignificant difference you should consider lowering your CPU count
Gang Scheduler User Guide - 21

requested in order to be allocated a smaller number of CPUs more frequently for a
net increase in throughput.
Real memory used

Real memory being used by all processes currently associated with thisjob. If you
see wide variations in real memory use between job run and wait states, thejob is
paging out to virtual memory and you should notify your system administrator to
inspect the gang scheduler parameters for possible tuning problems.

Virtual memory used

Virtual memory being used by all processes currently associated with this job.

Memory requested

M egabytes of memory space being requested by thisjob. Thisinformationisoptional,
but may effect job scheduling.

Disk space requested

Gigabytes of disk space being requested by thisjob. Thisinformation isoptional, but
may effect job scheduling.

Gang Scheduler User Guide - 22

Advanced Topics

Computer Failure

If one of the computers being gang scheduled fails, a portion of your program may cease execution.
Y ou should probably add logic to your own program to deal with the failure of one computer in a cluster
in the way that you prefer. The gang scheduler will attempt to continue scheduling of any remaining
components of your program.

Error Code Translation
Error codes can be trandated into a descriptive message using the GangErrMsg function. Its only

argument is the gang scheduler error code and it returns a string as demonstrated below:

printf("Gang Schedul er error code %l: %\n",rc, GangErrMsg(rc));

Process Removal

Processes added to a gang scheduler job can be explicitly removed from that job. Thisis normally
accomplished when the process no longer exists, but can be done explicitly by the GangProcRemove call.
This call's arguments are identical to those of GangProcAdd and are detailed below:

extern gsRetVal GangProcRenpve(
struct GangJobld *gang_job_id ptr, /* The job ID */
JOB_PRCC proc_type, /* Type of process identifier */
int id); /* I D of process etc. */

A job and all of its processes can explicitly removed from the gang scheduler's control by registering
for zero CPUs on each computer being used.

Gang Scheduler User Guide - 23

Job Class Change

The class of ajob can be modified using the GangJobClass function. Note that some job classes have
restricted availability and there are some restrictions on movements between job classes.

extern gsRetVal GangJobd ass(
struct GangJobld *gang_job_id ptr, /* The job ID */
JOB_CLASS job_cl ass); /* New job class */

GangJobClass can also be used to disable the use of SIGUSR1 and SIGUSR2 by the gang scheduler
by issuing the call withajob_classof NO_SIGNALS. To insurethat no signal handlers are established by
the gang scheduler and no signals are sent to ajob, execute " GangJobClass(NULL,NO_SIGNALYS);" prior
to executing GangJobRegister. Alternately you may include the flag NO_SIGNALS FLAG inthejob
classs value as shown:

GangJobRegi ster (&my_job_id, CLASS BATCH | NO_SI GNALS FLAG &resource_list).

If GangJobClassis executed later in ajob, the signal handlerswill continue to exist, but signalswill cease
to be sent to the job by the gang scheduling system. See the GangUserAPI.h file for information about
other job classes. Other than to disable signals, the use of this call by usersis not advised.

GangHostQuery

Y ou may wish to assess the availability of resources on a machine prior to attempting to change
resources. The GangHostQuery can be used to determine what proportion of gang scheduler time slices
would be availableto thisjob if the specified additional CPU resources were applied to the problem. Note
that the number of additional CPUs is specified rather than the aggregate number of CPUs to be applied
to the problem. Normally applying additional resourcesto the problem will result in those resources being
provided at less frequent intervals.

extern int GangHost Query(
char *host nane, /* Conputer where resources are requested */
int cpu_count); /* Nunber of additional CPUs to allocate */

Specify the name of the computer on which these CPU resources are desired and the CPU count. The
function will return the percentage of current time slices which would be applied to the problem. A value
of zero indicates that no additional resources can be applied at present. A value of 100 or more indicates
that additional CPU resources can be applied without reducing the frequency at which those resources are
applied. Note that this call will not reserve resources for the job and that changes in the workload occur
frequently. When arequest is actually issued to reserve those resources, the quantity of resources available
may be more or less than earlier reported by this function.

Gang Scheduler User Guide - 24

Remote Procedure Calls

Event Logging

A remote procedure call (RPC) is provided for gang scheduler developersto log events directly into
the gang scheduler'slog. The use of thiscall by usersisnot advised, but is detailed bel ow for completeness:

extern gsRetVal GangMessage(
char *message, /* The nessage to | og */
char *host); /* Conmputer on which to | og the nessage */

Timing Information

Timing information is available through a second RPC. Since the information returned is based upon
the gang scheduler daemon's database, the precision of the dataislimited to that of the time-slice duration.
The times reported are the CPU time allocated and CPU time used. The CPU time allocated is the product
of the program's CPU count and the time-dlice duration summed over all time-slices and all computers
used. The CPU time used isthe CPU time consumed by all processes currently associated with the program.

WARNING:
The CPU time used by processes that have already terminated prior to the execution of this RPC is not
reported. Both times are in units of seconds as detailed below:

extern gsRetVal GangGet St at s(
struct GangJobld *gang_job_id ptr, /* The job ID */
long int *seconds_all ocated, /* CPU sec allocated to job */
long int *seconds_used) /* CPU tinme used by job */

Gang Scheduler User Guide - 25

Thread Use

Since al threads are associated with a single process, multithreaded programs only need to register a
single process. There is no need to register each thread for gang scheduling. Because of atemporary
dependence upon signals in the current implementation and complicationsin signal handling within a
threaded program, overlap will vary somewhat with the system's workload.

For threaded programs, always use the separate, thread-safe header files (GangUserAPI_r.hfor C, and
the equivalent fGangUserAPI_r.h for Fortran) as well as the corresponding thread-safe support library
(libgs r.a).

To improvethread support, some former functions (in the thread-safe library ONLY') have been replaced
by Fortran subroutines. Each subroutine now has an (additional) integer argument in which to place the
return value (instead of simply having thefunctionreturnit). Three callsare affected by thislibrary update:

OLD: return_value = GangJobClass(f_job_id,f job_class)
NEW: call GangJobClass(f_job_id, f job class, return_value)

OLD: return_value = GangJobRegister(f_job _id)
NEW: call GangJobRegister(f_job_id, return_value)

OLD: return_value = GangProcAdd(f_job _id)
NEW: call GangProcAdd(f_job _id, return_value)

Gang Scheduler User Guide - 26

Fortran Use

A subset of the subroutine calls described above has been prepared for ease of use from the Fortran
programming environment. The general usage pattern is the same as for C, except that in Fortran two
separate functions register the job resource needs (GangResourceRegister) and get itsjob ID
(GangJobRegister), whilein C the second function performs both of these taskstogether. This section ends
with a simple Fortran code example.

First the storagefor the gang scheduler job 1D must be created. The header filefGangUserAPI.h contains
thesize of the structureintheinteger GANG_JOB_ID_LEN. Thejob_id should then be created asan array
of GANG_JOB_ID_LEN elements of type integer* 4.

GangJobldClear:
The GangJobldClear subroutine will clear theinitial job ID variable, which is the only argument to the
subroutine. Thejob ID must be cleared prior to registration with the gang scheduler or an attempt will be
made to apply the request to an existing job.

GangResourceRegister:
Next register for the job's resource requirements on each computer to be used with the (Fortran-only)
GangResourceRegister subroutine. The GangResourceRegister subroutine in Fortran has the same five
arguments as does the gang_resources_list of pointersin the C version of GangJobRegister (detailed in
the GangJobRegister Arguments (page 10) section above), namely: name of the computer, number of CPUs
desired on that computer, minimum number of CPUs acceptable on that computer, megabytes of memory
storage desired (optional), and gigabytes of disk storage desired (optional). See the code example below.

GangJobRegister:
After all of the resource requirements have been specified for all computers to be utilized, issue the
GangJobRegister call to register the job and get ajob ID back. Thisjob ID will be used in callsto the
GangProcAdd subroutine, which associates the process ID of the calling process with job. The job's ID
applies throughout the computing environment and it is your responsibility to propagate it as needed. All
of the processes associated with this job must register with the same job ID.

GangJobClass:
A job's class or signal handling may be altered with the call GangJobClass, which takes the job ID and
new class as arguments. The job classNO_SIGNALSwill disable use of SIGUSR1 and SIGUSR2 by the
gang scheduler. Other job classes are as described in the C-language GangJobRegi ster section above. (page
10) For the job classto bein effect over the entire lifetime of the job, execute GangJobClass between
GangJobl dClear and GangJobRegister. Seethe GangUserAPI.h file for information about other job classes.

GangJobTime:
The GangJobTime subroutine will return the CPU time allocated and used, if you want timing information.

Gang Scheduler User Guide - 27

The code fragment below shows the code required to register ajob to run with 8 CPUs on GPS320.
The process is also registered as part of that job. For all of these calls, any errorswill result in an error
description being printed and the program terminating. The GangJobClass, GangJobRegister, and
GangProcAdd functions return error codes.

150

160

i nclude ' f GangUser API . h
i nteger*4 gang_j ob_i d(GANG JOB I D_LEN)
real seconds_all ocated, seconds_used

Regi ster the job's resource requirenents and get a job id
call GangJobl dC ear (gang_j ob_i d)

Di sabl e signals, note value of gang job_id is not set yet
DI SABLEI NG SI GNALS | S NOT RECOMVENDED AS A DEFAULT
call GangJobd ass(gang job_id, NO_SI GNALS)

call GangResourceRegi ster("gps320", 8, 1, 3, 6)
i = GangJobRegi ster(gang_j ob_i d)

if (i .eq. 0) go to 150

wite(6,*) 'GangJobRegister error ',i

st op

conti nue

Regi ster the processes which are part of the job
i = GangProcAdd(gang_j ob_id)

if (i .eq. 0) go to 160

wite(6,*) 'GangProcAdd error ', i

stop

conti nue

Do some work
call work(gang_job_id)

Get the tining informtion

call GangJobTi ne(gang job_id, seconds_all ocated, seconds_used)
wite(6,*) 'GangJobTi ne: seconds_all ocated ', seconds_al | ocat ed
wite(6,*) 'GangJobTi ne: seconds_used ', seconds_used

Gang Scheduler User Guide - 28

Examples

These sample parallel programs (OCF only) were developed by L C's Distributed Computing Tools
Group (DCTG) to show how to install the gang scheduler API featuresinto a variety of programming
situations. Each example description here links to the corresponding source and MAKE files, which reside
in other DCTG directories. Remember, however, that (as the How to Use (page 5) section above reveals),
only PVM users must take this complex approach; MPICH and Digital MPI users can invoke gang scheduling
WITHOUT making these elaborate code changes (and sample mpichk2.f shows the smplier alternative
that most DMPI users will prefer).

Fortran MPI (one host)

Language: Fortran

Sample size: 98 lines

Goal/features. Shows gang scheduling a simple MPI job on a single machine using
the fGangUserAPI.h features.

Fortran Digital MPI (multiple hosts)

Language: Fortran

Sample size: (a) 237 lines, (b) 289 lines

Goal/features. (2) Sample mpichk2.f uses the simple, one-function gs _register()
approach, showing the default way to gang schedule aDMPI job.

(b) Sample mpichk.f showsthe elaborate (optional) alternative approach in which the
entire gang scheduler interfaceis explicitly added to the code (uses fGangUserAPI.h
features and requires SSH support to run).

Fortran90 Threads

Language: Fortran90

Sample size: 26 lines

Goal/features. Shows how to gang schedule a Fortran90 program with four threads
(using the fGangUserAPI.h features).

Shared-Memory Parallel Program

Language: C

Sample size: 74 lines

Goal/features. Shows how to gang schedule ashared-memory parallel program written
in C by using the GangUserAPI.h features.

Parallel Virtual Machine (multiple hosts)

Language: C

Sample size: 109 lines

Goal/features. Shows how to gang schedule aPVM job across several Digital
computers. Both the GangUserAPI.h features (within the code) and SSH support
(outside the code) are needed in this case.

Gang Scheduler User Guide - 29

http://www-lc.llnl.gov/global_access/dctg/gang/dec.example.fortran.mpi/index.html
http://www-lc.llnl.gov/global_access/dctg/gang/dec.example.fortran.dmpi/index.html
http://www-lc.llnl.gov/global_access/dctg/gang/dec.example.f90/index.html
http://www-lc.llnl.gov/global_access/dctg/gang/dec.example.c.shared.mem/index.html
http://www-lc.llnl.gov/global_access/dctg/gang/dec.example.c.pvm/index.html

Parallel Virtual Machine (multiple hosts)

Language: Fortran

Sample size: 95 lines

Goal/features. Shows how to gang schedule a PV M job across several Digital
computers. Both the fGangUserAPI.h features (within the code) and SSH support
(outside the code) are needed in this case.

Gang Scheduler User Guide - 30

http://www-lc.llnl.gov/global_access/dctg/gang/dec.example.fortran.pvm/index.html

Preemption of Jobs

The Goal.
Oneway to promote time sharing (running more than one job on anode) isthrough " concurrent preemption,”
in which all the tasks of ajob are ssmultaneously suspended (but remain in memory) to make way for
another ("expedited") job, then rescheduled as a gang on the same nodes when the other job finishes.
Effective preemption requires a way to make and manage preemptable jobs, while still identifying and
protecting (afew) specific nonpreemptable jobs. Currently, L C supports job preemption only on its open
and secure IBM SP computers (where the gang scheduler is called GangLL).

Preemptable Jobs.
To alow GangLL to preempt ajob, that job must be compiled and |oaded with thread-safe compilers and
libraries. Formerly thesehad _rintheir names(xIf_r, mpxIc_r, libc_r.a), but now such thread-safe software
isthedefault for compiling and loading on LC'sIBM SP machines. In fact, whenever preemptionisenabled,
GangL L will by default treat all jobsin the pbatch class as preemptable. If it encounters a nonpreemptable
pbatch job (that has not been protected using the special technique in the next subsection), GangL L will
kill the job if it needs to run an expedited job.

When DPCS/LCRM preempts a normal job, then that job:

« halts execution but remains memory resident,

« temporarily releasesits nodes for use by the expedited job,

« charges no time (elapsed or CPU) during its preemption pause,

« showsthe job status PREEMPTD in PSTAT reports, and

« resumes automatically when the expedited job that borrowed its nodes ends.

Preempting ajob alters (prolongs) its apparent run time (or "wall-clock™ time). So the current version
of DPCS/LCRM incorporates the concept of "interrupted run-time limit,” defined as

IRTL = (original run-tinme limt) + (time spent preenpted)

to compensate for time spent during preemption. For example, ajob with a 2-hour run-time limit that is
preempted for 48 minutes will automatically be allowed to stay on the machine for 2 hours and 48 minutes
because that longer total timeisits "interrupted run-time limit."

Nonpreemptable Jobs.
To protect known nonpreemptable jobs on Blue an extra option (-np) has been added to PSUB. PSUB's
-np option works only on SP (IBM) machines, and isignored for jobs scheduled on any other machines.
Invoking -np overrides the job-class (pbatch, pdebug) designation you may have made with PSUB's -c
option and places the job in a specia "nonstop” class. All nonstop jobs are not time shared, and GangL L
does not attempt to run expedited jobs on nodes that are in use by any job in the nonstop class.

To discourage abuse of -np, nonstop nonpreemptabl e jobs have a maximum time limit of only 2 hours.
(Invoking -np has no effect on any other condition that you may have specified with PSUB's -c besides
job class.)

Gang Scheduler User Guide - 31

There are two specia cases of nonpreemptable jobs that do not involve using -np. First, jobs that are
already "expedited" are naturally not eligible for preemption. Second, you can make a"job step” of a
running job temporarily nonpreemptabl e (to promote real -time interaction with the job, such as debugging)
by using LLEXPRESS (/usr/local/bin/llexpress) on Blue (see its man page for clues).

Preemption Status.
Y ou can determine whether GangL L preemption is enabled or disabled at any time by logging on to Blue
and using GREP to check the current value of the EXPEDITE_CLASS variable in the local DPCS
configuration file. Here are the steps and their meaning:

USER: grep EXPEDI TE /dpcs/adm pcs. cfg

RTNE: [response] [meani ng]
EXPEDI TE CLASS=I GNCRE preenption is
DI SABLED
EXPEDI TE_CLASS=EXPEDI TE preenption is
ENABLED

To enable such normal-job preemption on an IBM SP (only), the system administrator must (1) set the
scheduling mode of LoadLeveler to AP, (2) restart the PSPD daemon on the machine's DPCS/LCRM
gateway node, and (3) usethe LRMMGR utility to specify a suitably large value for "maximum node
divergence,” the maximum number of nodes that are allowed to go idle as a side effect of scheduling an
expedited job over preempted normal jobs. The LRMM GR command to specify maximum node divergence
(allowed idle nodes) is

set gl obal nmaxnodedi verge n
where n is a positive integer.

DPCSRole.
Starting in January, 2001, with version 6.5 of the Distributed Production Control System (DPCS/LCRM),
DPCS schedules all IBM SP batch jobs by node pool rather than by job classto better support gang
scheduling. SincetheBM SP node pool s use names (pbatch, pdebug) formerly associated with job classes
on those machines, this technical change should be transparent to users.

Gang Scheduler User Guide - 32

How It Works

One gang scheduler daemon excutes on each computer to be scheduled. Programs spanning multiple
computers contact the appropriate gang scheduler daemons to be preall ocated specific time slices on each
computer. An Ousterhout matrix is used to record these preallocated resources asillustrated in this sample
table:

Conput er East Conputer East Conputer West Conputer West

CPU 1 CPU 2 CPU 1 CPU 2
Time 1 Job A Job A Job B Job B
Tinme 2 Job C Job C Job C Job C
Time 3 Job A Job A Job B Job B
Time 4 Job D Job D Job D Job D

Each processor is represented by one column of the matrix and each row represents one time sice. At
prearranged times, the gang scheduler daemons allocate resources as specified in the Ousterhout matrix.
Thelast row in the matrix, time 4, is followed by repeating the cycle from the top, time 1. In this gang
scheduler implementation, the Ousterhout matrix describes a one-hour schedule with the first time slice
starting on the hour and subsequent time slices at intervals configured when the gang scheduler is built
(see below for constraints on the dlices).

All computer clocks must be synchronized to within afraction of a second for concurrent scheduling
to occur. LLNL uses aNetwork Time Protocol (NTP) for clock synchronization, although the Distributed
Time Service (DTS) and other systems would be equally satisfactory. The gang scheduler daemon uses
an alarmto awake at the appropriate time and runs as user ROOT to avoid being subject to class scheduling
constraints.

The gang scheduler is designed to provide each program with access to a similar quantity of processor
cycleswhether registered for gang scheduling or not. The number of time slices, or entriesin the Ousterhout
matrix, allocated to a program spanning multiple computersis based upon the load on each computer at
program initiation time. The program is alocated a percentage of Ouserhout matrix entries equal to its
proportion of threads on the most heavily loaded computer. For example, a program registering with the
gang scheduler for four-way parallel on an eight-processor computer with 12 other runnabl e threads should
be allocated 25% of Ousterhout matrix entries on that computer, or four processors every other time slice.
A gang scheduler subsystem periodically may increase or decrease the number of time slices preallocated
to a program spanning multiple computers as system loads vary.

For programs that run exclusively on one computer, scheduling decisions occur at the beginning of
each time slice. These programs lack entries in the Ousterhout matrix, but instead make use of available
entries based on current conditions. This permits the gang scheduler to rapidly respond to changed in the
workload.

At LLNL, time slices are configured to be relatively long (30 seconds). While such along time slice
reduces program responsiveness, it was required by two factors. First, class scheduler resource alocation
targets require on the order of one second propagate to the kernel, resulting in unsatisfactory parallel
program overlap for time-dlice durations less than about 5 seconds. Second, many programs exceed one
gigabyte in size and while context-switching the processor may be performed in milliseconds, the timeto

Gang Scheduler User Guide - 33

refresh the cache may be on the order of hundreds of milliseconds and the time to context-switch memory
(paging one program from memory to disk and paging another program in the reverse direction) may be
several seconds. To provide faster responsiveness, the execution of anewly initiated program may commence
prior to the beginning of a new time dlice, if appropriate for the given workload.

Also note that programs not registered for gang scheduling are not subject to these time slices, but are
scheduled using normal UNIX scheduling a gorithrms and compute resources not allocated to gang-scheduled
jobs.

Gang Scheduler User Guide - 34

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
representsthat itsuse would not infringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government thereof, and shall not be used for advertising or product
endorsement purposes.

(C) Copyright 2003 The Regents of the University of California. All rights reserved.

Gang Scheduler User Guide - 35

i ntroduction

usage))
usage-instructions

npi - usage
dnpi - usage
pvm usage
usage-condi ti ons

signal s

initialization
gangj obi ni t

j ob-reqi station
gangj obr eqgi ster
regi stration-argunents

j ob-cl asses
reqi strati on-exanpl e

process-addi tion
gangpr ocadd
addi ti on-argunents

processes
addi ti on- exanpl e

j ob-noni toring

xgang
xgang- usage
xgang- nachi ne-detail s
xgang- j ob-details

gang-f eat ur es
conputer-failure
error-codes
gangerr nsg
pr ocess-renova
gangpr ocr enove
j ob-cl ass-change
si gnal s-di sabl ed
gangj obcl ass
r esour ce- checki ng
ganghost query
rpc

event -1 oggi ng

Keyword Index
To see an dphabetical list of keywords for this document, consult the next section (page 38).

Descri ption
This entire docunent.
The nane of this docunent.
Topi cs covered in this document.
Where these programs run
Who to contact for assistance.

Gang sched. role, term nol ogy.

When and how to use gang schd.

How to use gang schd (checklist).
Usi ng gang schd with MPI CH

Usi ng gang schd with DWPI

Usi ng gang schd with PVM (full API).
When to use gang schedul er.

Why gang schd uses signals; disabling.

(Cray Only) no | onger needed.
(Cray Only) no | onger needed.

Set resource needs (in C; get job ID.
Set resource needs (in C); get job ID
Job cl asses for gang schd; other args.
Job classes for gang schd; other args.
C sanpl e usi ng GangJobRegi ster.

Specify parallel job's processes.
Specify parallel job's processes.
How t o specify processes.

How t o specify processes.

C sanpl e usi ng GangPr ocAdd.

Tracking parallel jobs with XGANG
Tracking parallel jobs wth XGANG
How to run XGANG nonitor.

XGANG di spl ay by conputer.

XGANG di spl ay by job.

Speci al gang schd. features.

What happens if a conputer fails.
Transl ating gang schd error codes.
Transl ati ng gang schd error codes.
Renove process froma job.

Renove process froma job.

Changi ng cl asses; disabling signals.
Changi ng cl asses; disabling signals.
Changi ng cl asses; disabling signals.
Checking resource availability.
Checking resource availability.

Two gang schd renote procedure calls.
How to | og events (optional).

Gang Scheduler User Guide - 36

gangmessage _
timng-informtion

ganggetstats

t hr eads

fortran _
gangr esour cer eqi st er

exanpl es
preenption

tinme-slices

How to | og events (optional).
How to get job-tining info.

How to get job-tining info.
Thread use wi th gang schedul i ng.

Fortran gang- schedul er support.
Set resource needs in Fortran.

Sanpl e gang schedul er prograns.

Job preenption features, options.
How gang schd handles tinme slices.
The structural index of keywords.
The al phabetical index of keywords.

The | atest changes to this docunent.
The conplete revision history.

Gang Scheduler User Guide - 37

Alphabetical List of Keywords

addi ti on-argunents
addi ti on- exanpl e
avai lability
conputer-failure
dat e

dnpi - usage
entire
error-codes
event -1 oggi ng
exanpl es

fortran
gang-f eat ur es
ganger r nsg
gangget stat s
ganghost query
gangj obcl ass
gangj obi ni t
gangj obr eqi ster
gangnessage
gangpr ocadd
gangpr ocr enove
gangr esour cer eqgi st er

i ndex
initialization

i nt roducti on

j ob-cl ass-change
| ob-cl asses

| ob-noni toring

| ob-reqgi station
npi - usage
preenption
process-addi tion
process-renova

processes
pvim usage

reqgi strati on-argunents

reqi strati on-exanpl e

resour ce- checki ng
revisions
rpc

scope

signal s
si gnal s-di sabl ed

t hr eads
time-slices
timng-infornation
title

usage
usage-condi ti ons
usage-i nstructions

Descri ption

The al phabetical index of keywords.
How t o specify processes.

C sanpl e usi ng GangPr ocAdd.

Where these prograns run

What happens if a conputer fails.

The | atest changes to this docunent.
Usi ng gang schd with DWPI

This entire docunent.

Transl ati ng gang schd error codes.
How to | og events (optional).

Sanmpl e gang schedul er prograns.
Fortran gang- schedul er support.
Speci al gang schd. features.
Transl ati ng gang schd error codes.
How to get job-tining info.

Checki ng resource availability.
Changi ng cl asses; disabling signals.
(Cray Only) no | onger needed.

Set resource needs (in C; get job ID
How to | og events (optional).

Specify parallel job's processes.
Renmove process froma job.

Set resource needs in Fortran.

The structural index of keywords.
(Cray Only) no | onger needed.

Gang sched. role, termn nol ogy.
Changi ng cl asses; disabling signals.
Job classes for gang schd; other args.
Tracking parallel jobs wth XGANG
Set resource needs (in C; get job ID
Usi ng gang schd with MPI CH

Job preenption features, options.
Specify parallel job's processes.
Renmove process froma job.

How t o specify processes.

Usi ng gang schd with PVM (full API).
Job classes for gang schd; other args.
C sanpl e usi ng GangJobRegi ster.
Checki ng resource availability.

The conplete revision history.

Two gang schd renote procedure calls.
Topi cs covered in this docunent.

Wiy gang schd uses signals; disabling.
Changi ng cl asses; disabling signals.
Thread use with gang schedul i ng.

How gang schd handles tinme slices.
How to get job-tining info.

The nane of this docunent.

When and how to use gang schd.

When to use gang schedul er.

How to use gang schd (checklist).

Gang Scheduler User Guide - 38

who Who to contact for assistance.

xgang Tracking parallel jobs with XGANG
xgang-j ob-details XGANG di spl ay by job.

xgang- machi ne-details XGANG di spl ay by computer.

Xgang- usage How t o run XGANG nonitor.

Gang Scheduler User Guide - 39

Date and Revisions

Revi si on Keywor d Descri ption of
Dat e Af f ect ed Change
12Nov03 availability Now on | BM SP machi nes.
preenption | npl enent ati on details added.
22Apr 02 availability Gang schedul er on GPS320 only.
gangj obi ni t Call now obsol ete.
entire CRAY details renoved throughout.
10Jan01 preenption Node pool vs job class scheduling noted.
08Aug00 preenption Preenpti on status check expl ai ned.
scope Print instructions revised.
13Jan00 preenption New section on job preenption.
15Nov99 t hr eads Fortran thread-safe |ibrary changed.
09Aug99 entire Expanded and revi sed throughout.
28Jul 99 entire First edition of Gang Schedul er CGui de.

TRG (12Nov03)

UCRL-WEB-201481
Privacy and Legal Notice (URL: http://www.lInl.gov/disclaimer.html)
TRG (12Nov03) Contact on the OCF: |c-hotline@lInl.gov, on the SCF: Ic-hotline@pop.lInl.gov

Gang Scheduler User Guide - 40

http://www.llnl.gov/disclaimer.html

